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Characterizing Seismogenic Fault Structures
in Oklahoma Using a Relocated
Template-Matched Catalog
by Robert J. Skoumal, J. Ole Kaven, and Jacob I. Walter

ABSTRACT

Oklahoma is one of the most seismically active places in the
United States as a result of industry activities. To characterize
the fault networks responsible for these earthquakes in
Oklahoma, we relocated a large-scale template-matching catalog
between 2010 and 2016 using the GrowClust algorithm. This
relocated catalog is currently the most complete statewide catalog
for Oklahoma during this seven year window. Using this relo-
cated catalog, we identified seismogenic fault segments by devel-
oping an algorithm (FaultID) that clusters earthquakes and then
identifies linear trends within each cluster. Considering the large
number of earthquakes in Oklahoma, this algorithm made the
process of identifying previously unmapped seismogenic faults
more approachable and objective. We identify approximately
2500 seismogenic fault segments that are in general agreement
with focal mechanisms and optimally oriented relative to maxi-
mum principle stress measurements. We demonstrate that these
fault orientations can be used to approximate the maximum
principle stress orientations.

Supplemental Content: Relocated earthquake catalog in
Oklahoma between 2010 and 2016 and a table of the seismo-
genic fault segments identified with the FaultID algorithm.

INTRODUCTION

The seismicity rate in the central and eastern United States
increased 40-fold within the past decade predominantly as a
result of human activities (e.g., Ellsworth, 2013; van der
Baan and Calixto, 2017). Oklahoma, the state with the most
prominent seismicity rate increases, had more catalogedM > 3
earthquakes than California during the same period between
2010 and 2018. The vast majority of these induced earthquakes
in Oklahoma occurred along unmapped strike-slip faults in the
upper Precambrian basement (e.g., McNamara et al., 2015;
Keranen and Weingarten, 2018). Although the seismicity and
corresponding faults of some of the more prominent sequences
have been identified by prior work (e.g., Keranen et al., 2013;

Chen et al., 2017), the majority of the numerous smaller
seismogenic faults that are ubiquitous throughout the state
remained uncharacterized.

Schoenball and Ellsworth (2017) relocated the previously
cataloged earthquakes in northern Oklahoma and southern
Kansas between May 2013 and November 2016 using standard
location (HYPOINVERSE-2000; Klein, 2014) and relocation
tools (hypoDD; Waldhauser and Ellsworth, 2000). Because
phase picks from the Oklahoma Geological Survey (OGS) were
not published at the time, Schoenball and Ellsworth (2017) esti-
mated phase arrivals for the OGS-cataloged events using an
automatic phase detection approach and were able to refine the
locations of 11,997 earthquakes in Oklahoma.

In this study, we improved the statewide seismicity
catalog by relocating a template-matching catalog using manual
phase picks from the OGS between 2010 and 2016 and the
GrowClust (Trugman and Shearer, 2017) relocation algorithm.
We then developed an algorithm (FaultID) to identify linear
clusters of seismicity and applied it to our relocated catalog to
characterize previously unmapped seismogenic faults. Because
nearly all of the seismicity occurred on previously unmapped
faults, these improved earthquake and fault catalogs could help
improve our understanding of tectonic variations, seismic hazard
estimates, and processes that induce seismicity in Oklahoma.

METHODS

Earthquake Relocation
Previous work relocated template-matched earthquake catalogs
to identify fine-fault networks (e.g., Shelly and Hill, 2011; Shelly
et al., 2013, 2016). Here, we use the improved Oklahoma earth-
quake catalog (SBC16; Skoumal et al., 2016) that was generated
by applying large-scale template matching to all 23,889 earth-
quakes cataloged by the OGS (master events) in Oklahoma
between 16 October 2008 and 31 December 2016 using three
regional seismometers. This catalog used a conservative detec-
tion threshold of 15 times the daily median absolute deviation
of the network normalized cross-correlation coefficients. This
improved earthquake catalog contains 209,409 earthquakes with
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a reported magnitude of completeness M c ≈ 1:6. Although
SBC16 is the most complete Oklahoma catalog encompassing
2008–2016, the earthquakes were not relocated because manual
phase picks for the OGS-cataloged events were not publicly
available at the time of the study. As a result, the newly detected
earthquakes (slave events) in the SBC16 catalog had been
assigned the location of the OGS-cataloged event with the larg-
est network normalized correlation coefficient, limiting the
applications of the catalog. The earthquake locations in the
original OGS catalog were determined using a 1D velocity
model (Darold et al., 2015) with average reported horizontal
and vertical location errors of ∼2 km.

Here, using >1 million manually identified P- and S-
phase picks on the OGS-cataloged earthquakes between 1
January 2010 and 31 December 2016, we relocate the SBC16
catalog (Fig. 1). A total of 397 seismometers in Oklahoma and
the surrounding states are utilized for the catalog relocation
(Fig. 1). The SBC16 master events that came from the OGS
catalog are already represented by the corresponding manual
phase picks, so we directly associate those phase picks with
the corresponding master events. Phase arrival times for slave
events in the SBC16 catalog are estimated by cross correlating a
5 s window encompassing the phase pick from the master
events against their respective slave events. For a new phase
pick to be identified, its correlation coefficient must exceed
0.7. Differential times and cross-correlation coefficients for
event pairs with SBC16 catalog locations within 5 km of each
other are calculated, resulting in >35 million event pairs.
All correlations are calculated using data interpolated to a
common sampling interval of 100 samples per second and then
band-pass filtered between 5 and 15 Hz, the same filtering
parameters used in the creation of the SBC16 template-
matching catalog.

Using these lag and correlation coefficients between event
pairs, earthquakes are relocated with the GrowClust algorithm
(Trugman and Shearer, 2017) using the OGS 1D velocity
model (Darold et al., 2015). GrowClust has a similar objective
to other relative relocation algorithms (e.g., hypoDD;
Waldhauser and Ellsworth, 2000), but has some algorithmic
advantages (Trugman and Shearer, 2017). GrowClust utilizes
a hierarchical cluster algorithm that relocates earthquakes
within similar clusters that allow larger earthquake catalogs,
such as our improved Oklahoma catalog, that allows large data
sets to be processed more efficiently. The algorithm uses the L1
norm, allowing for more robust misfit criteria than the stan-
dard least-squares approach. A maximum station distance of
80 km and a maximum root mean square (rms) differential
time residual of 0.2 s for cluster merger is used in the
GrowClust algorithm. To determine location uncertainties,
100 bootstrap iterations of GrowClust’s nonparametric uncer-
tainty estimation algorithm are performed. To be considered in
later analyses, relocated earthquakes must have P- and S-phase
rms residual differential times less than 0.2 s, contain five or
more events in its respective GrowClust branch, and five or
more phase differential times used in the relocation. Our final
relocated catalog (SKW19) contains 64,236 events with
reported 1σ horizontal and vertical relative location uncertain-
ties of ∼600 and 570 m, respectively. The relocated Oklahoma
seismicity catalog (SKW19) and the linear fault segments that
were identified with FaultID in this study are included in the
Ⓔ supplemental content to this article.

Identification of Seismogenic Faults
Using our SKW19 relocated catalog of 64,236 earthquakes,
we identify linear trends of seismicity that we then interpret
to represent seismogenic faults. To make the process of iden-
tifying fault segments more easily accessible and objective, we
develop an algorithm (FaultID) that iteratively identifies
clusters of seismicity and distinguishes linear features within
each cluster (Fig. 2). Previous work focused on approaches
to identify seismogenic fault planes using a variety of methods
ranging in complexity and amount of manual parameter
selection (e.g., Ouillon et al., 2008; Kaven and Pollard,
2013; Wang et al., 2013). Here, our goal was to create a simpler
method for rapidly identifying linear trends of seismicity in
Oklahoma using popular, efficient clustering and point-fitting
algorithms.

Earthquakes are clustered based on their horizontal spatial
location using the density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm (Ester et al., 1996).
With this approach, an earthquake is classified as a core event
if there are at least N other earthquakes within the Euclidean
distance D. Any earthquakes that are within distance D from a
core point and had fewer than N neighbors within distance D
are considered border events. If a core event is within distance
D from another core event, they are considered to be in the
same cluster along with any corresponding border events. We
repeat this clustering approach five times with the number of
neighborsN represented by the numbers in the set [1000, 500,

▴ Figure 1. All 64,236 relocated Oklahoma earthquakes from this
study (pluses). Rectangles denote areas used in Figures 3–6, 8.
Triangles represent seismometers used for earthquake location
within this region. Filled triangles denote the three stations used
to generate the original template-matched earthquake catalog
(SBC16; Skoumal et al., 2016). The color version of this figure
is available only in the electronic edition.
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100, 50, 5] and distances (km)D in the set [5, 2.5, 0.5, 0.2, 0.2].
Although these parameters are chosen rather arbitrarily, they
follow the general approach of considering correspondingly
decreasing sizes of seismicity clusters and event distances.

Following each of these clustering steps, we search for
linear trends within each group of earthquakes using the
RANdom SAmple Consensus (RANSAC) algorithm (Fischler
and Bolles, 1981), a nondeterministic detection method in
which classified outliers do not influence the end model.
With this approach, two earthquakes in a cluster are randomly
selected and used to fit a line. Inlier events are classified as
earthquakes within a cluster that have residuals less than
threshres from the line defined as

EQ-TARGET;temp:intralink-;;52;221

threshres �MAD��EQX −min�EQX ��; �EQY −min�EQY ���;

in which MAD is the median absolute deviation and EQX ,
EQY represents the set of horizontal coordinates of the earth-
quakes in a given cluster. We repeat the process of randomly
selecting two points and determining inliers 1000 times for each
cluster. The model that contains the largest number of inliers in
a cluster is selected, and the other models are discarded. For a
model to be accepted, the number of inlier events must exceed a
threshold. For iterations in which N ≥ 5, if more than N=4
earthquakes are classified as inliers, the inliers are then associated
with the line segment; ifN � 5, then ≥5 earthquakes have to be

inliers to be associated. If this threshold of associated events is
not met, the association is deemed to be a failure and the model
is discarded. If the association is successful and if there are more
than N=4 outlier earthquakes in the cluster (or ≥5 outliers if
N � 5), the RANSAC method is repeated using only the
remaining outlier events. Repeating this step allows discrete fault
segments that were proximal to each other, such as conjugate
faults or bends in faults, to be identified.

A quality control step is then implemented. To ensure
fault segments are well represented by seismicity, line segments
that have a ratio of fewer than 10 earthquakes per one kilo-
meter of line segment length are discarded. In addition, if two
line segments are parallel and within 0.25 km of one another,
the segment with fewer inliers is discarded. The objective of
removing the adjacent parallel segment helps ensure that any
nonvertical faults would be represented by a single line seg-
ment. For each cluster of inlier earthquakes that were success-
fully associated with a fault segment, a least-squares regression
is performed considering those inlier points.

Any earthquakes that have not been associated with a fault
are reconsidered in the subsequent DBSCAN/RANSAC/quality
control iterations. At the end of this processing, the resulting
line segments are then considered to represent the location and
trend of seismogenic faults.

Focal Mechanisms and Stress Orientations
We attempt to relate the fault orientation to the local stress
orientations by comparing fault trends to focal mechanisms
and borehole stress measurements. As described previously, the
earthquake locations are the only data used as input in the
FaultID algorithm. Because the FaultID results are created inde-
pendently from focal mechanisms and stress orientations, we use
these other independent measures to evaluate the identified seis-
mogenic fault segments. We focus this evaluation on two areas
in Oklahoma: (1) the area around the Mw 5.0 Cushing earth-
quake and (2) the area around Grant County. The Cushing
area is selected because it is the only M ≥ 5:0 earthquake that
has not yet been well characterized by other seismological stud-
ies. The Grant County area is selected because it contains the
highest density of identified faults as well as numerous fault ori-
entations that were poorly oriented to a reported principal stress
(SH max) value (described in the Seismogenic Fault Identification
section).

We compute focal mechanisms with the HASH algorithm
(Hardebeck and Shearer, 2002) using manually picked P-wave
polarities and the same velocity model that was used in the relo-
cations. Only focal mechanisms for events with a minimum of
eight phase picks and a maximum azimuthal gap of 90° are con-
sidered. This produces 12 focal mechanisms in the Cushing area
and 22 focal mechanisms for the southern Grant County area.

We compare our fault orientations against nearby SH max
orientations from Alt and Zoback (2016). Only stress orienta-
tions determined from drilling-induced tensile fractures (DITFs)
with reported qualities of A or B were considered. For B
quality SH max orientations, at least six DITFs with a combined
length >100 m and standard deviations of orientations ≤20°

▴ Figure 2. Algorithm flowchart describing the FaultID method. N
represents the minimum number of events to define a cluster, and D
represents the maximum interevent distance (km) for two points to
be considered in the same cluster. DBSCAN, density-based spatial
clustering of applications with noise; EQ, earthquake; QC, quality
control; RANSAC, RANdom SAmple Consensus. The color version
of this figure is available only in the electronic edition.
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had to have been identified in a single well; for A quality ori-
entations, DITFs had to have a combined length >300 m with
a standard deviation of ≤12° (Alt and Zoback, 2016).

We also estimate the approximate stress orientations using
the seismogenic faults identified by FaultID in the Grant
County and west Stillwater areas (Fig. 1). With this approach,
we assume that seismogenic faults would be preferentially dis-
tributed 30° from SH max, which is what we would expect for
vertical strike-slip faults and a coefficient of friction of ∼0:6.
Using 0.1° geographical bins with a horizontal step interval of
0.0125°, we calculate the median fault trend weighted by the
size of the respective faults in each bin. For the fault trend to
be calculated in a geographical bin, we require a minimum of
10 fault segments with a combined length of at least 4 km. To
estimate the fault trend uncertainties with this approach, we
perform 100 jackknife iterations and randomly remove 10%
of the faults in each trial.

RESULTS AND DISCUSSION

Pawnee Catalog Comparison
Using both local and regional seismometers, Chen et al. (2017)
relocated all OGS-cataloged earthquakes in the Pawnee area
(Fig. 1) along with some additional events that were manually
identified. These earthquakes were cross correlated to improve

differential phase picks and relocated using a 3D velocity
model with hypoDD. The final catalog includes 950 earth-
quakes between 13 December 2013 and 19 October 2016 with
a reported relative horizontal and vertical location uncertain-
ties of ∼35 and 200 m, respectively. Within this time window,
we would expect the Chen et al. (2017) catalog to be the most
accurate locations currently available for the Pawnee area. We
compare our catalog to (1) the OGS, (2) Chen et al. (2017),
and (3) Schoenball and Ellsworth (2017) catalogs using the
same time window and spatial area considered by Chen et al.
(2017) (Fig. 3). We find that the number of earthquakes in
their relocated template-matching catalog was comparable
to both the OGS and Schoenball and Ellsworth (2017) cata-
logs prior to the mainshock (Fig. 3e). Our catalog contains over
twice the number of earthquakes as Chen et al. (2017), albeit
with higher location uncertainties. Despite using a simple 1D
velocity model, our regional relocated catalog still does a
comparable job at identifying the similar earthquake locations
as seen in refined catalog of Chen et al. (2017).

Cushing Catalog Comparison
Approximately 3 km west of Cushing, Oklahoma, a Mw 5.0
earthquake occurred on 7 November 2016. In the Cushing
area (Fig. 1), the Schoenball and Ellsworth (2017) catalog
contains 155 earthquakes between 31 August 2014 and 22

▴ Figure 3. Comparison of earthquake catalogs (black dots) in the Pawnee, Oklahoma, area from (a) the Oklahoma Geological Survey
(OGS) catalog, (b) Chen et al. (2017), (c) Schoenball and Ellsworth (2017), and (d) this study between 13 December 2013 and 19 October
2016. The location of the 2016 Mw 5.8 Pawnee earthquake is represented by a star. (e) The relative timing and number of events in each
catalog within the respective region, with the vertical bar representing the timing of theMw 5.8 Pawnee earthquake. The color version of
this figure is available only in the electronic edition.
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November 2016. We compare the catalogs from (1) the OGS
catalog, (2) Schoenball and Ellsworth (2017), and (3) this
study during this time window (Fig. 4). To our knowledge,
these are the three most complete earthquake catalogs of
this area and no detailed analysis has previously been done
to characterize the corresponding faults in this area. Our
catalog contains over four times as many located earthquakes
as the other two catalogs (Fig. 4d). Similar to the Pawnee
example, the refined catalogs constrain the relatively diffusive
OGS-cataloged locations and allow fault planes to be identi-
fied. The earthquake locations in our catalog are similar to
Schoenball and Ellsworth (2017), but our catalog allows addi-
tional faults to be identified, illuminating a more complex fault
system that was not previously documented.

Seismogenic Fault Identification
In this study, 2492 seismogenic fault segments are identified
by FaultID using the SKW19 catalog. These fault segments
represent a total length of ∼826 km (average segment length
of ∼0:33 km ), 49,302 earthquakes (∼77% of the SKW19
earthquake catalog) were associated with these faults, and faults
were represented by an average of ∼19 earthquakes.

Here, we present examples of the seismogenic faults iden-
tified by the FaultID algorithm in the Cushing (Fig. 5) and the
southern Grant County areas (Fig. 6). The focal mechanisms
determined in our analysis are in general agreement with the
orientations of our algorithmically identified faults. Although
the automatically identified faults are imperfect, and even erro-
neous in some cases, the majority of fault segments represent

▴ Figure 4. Comparison of earthquake catalogs (black dots) in the Cushing, Oklahoma, area from (a) the OGS catalog, (b) Schoenball and
Ellsworth (2017), and (c) this study between 31 August 2014 and 22 November 2016. The location of the 2016Mw 5.0 Cushing earthquake is
represented by a star. (d) The relative timing and number of events in each catalog within the respective region, with the vertical bar
representing the timing of the Mw 5.0 Cushing earthquake. The color version of this figure is available only in the electronic edition.
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the trends of cataloged seismicity that we would have manually
selected. In general, the orientations of seismogenic strike-slip
faults identified by FaultID are ∼30° away from the regional
stress field (Fig. 7). This result is expected because injection-
induced seismicity has widely been observed along optimally
oriented faults (e.g., Skoumal et al., 2015; Keranen and
Weingarten, 2018), although a minority of suboptimally
oriented faults have also hosted induced earthquakes (e.g.,
Frohlich et al., 2014; Keranen and Weingarten, 2018).

Although most of our geographically binned seismogenic
faults are optimally oriented with respect to SH max measure-
ments, the southern Grant County area (centroid of approx-
imately −97:7°E, 36.7° N) is the major exception (Fig. 6); an A
quality SH max measurement of N79°E is similar to the median
fault trend azimuth of N69°E in the surrounding area. Local
stress rotations in this area may help explain this disagreement.
Two additional A quality SH max reports of N68°E and N59°E
were ∼20 km to the east and southeast, respectively (Fig. 8a).
In support of these SH max measurements, we observed a similar
rotation in the seismogenic fault azimuths (Fig. 8a) of ∼20°
over the same 20 km area (Fig. 8a,c). This rotation is in con-
trast with the majority of stress measurements and seismogenic
faults elsewhere in the state where little variation or deviation is

observed (Fig. 8b,d). Jackknife uncertainty estimates (Fig. 8c,d)
tended to be <5°, suggesting reasonably consistent fault orien-
tations in individual geographical bins, although some bins
with relatively few faults had larger errors (<10°). The cause
of this local stress rotation could potentially be associated with
the nearby Nemaha ridge. Another potential explanation could
be that there are elevated pore pressures due to the Nemaha
fault acting as a no-flow boundary for injected fluids. If this
was the case, larger pore pressures may have allowed for slip
along faults that were suboptimally oriented, although this
has yet to be observed in this particular case.

Limitations
Absolute earthquake locations could be better refined using
local or 3D velocity models. Although the locations are a sig-
nificant improvement over the OGS and SBC16 regional cat-
alogs, local seismicity analyses may still be inhibited by the
relatively large absolute location errors. Considering the gen-
eral agreement between fault orientations with SH max and focal
mechanisms, we suggest the fault catalog is generally reliable for
regional-scale analyses. However, because the seismogenic fault
segments were algorithmically determined, some erroneously
identified faults should be expected. Although these automati-
cally identified faults may inform broad fault characteristics
across the region, care should be taken when using these results
for local-scale assessments.

▴ Figure 5. Comparison of the SKW19 relocated earthquake
catalog (black pluses) for the area around the Mw 5.0 Cushing
earthquake (Fig. 1), the seismogenic fault segments identified
by the FaultID algorithm (line segments), and computed focal
mechanisms. The SH max arrows represent a stress measurement
(Alt and Zoback, 2016) ∼14 km to the west and include text
describing the azimuth, quality, and actual measurement location.
Dotted lines represent the locations of previously mapped faults
(Marsh and Holland, 2016). The color version of this figure is avail-
able only in the electronic edition.

▴ Figure 6. Comparison of the SKW19 relocated earthquake
catalog (pluses), the seismogenic fault segments identified by
the FaultID algorithm (line segments), and computed focal mech-
anisms for southern Grant County (Fig. 1). The SH max arrows
represent the approximate locations of two nearby stress mea-
surements (Alt and Zoback, 2016) and include text describing the
azimuth, quality, and actual measurement location. Dotted lines
represent the locations of previously mapped faults (Marsh and
Holland, 2016). The color version of this figure is available only in
the electronic edition.
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The faults identified in this study are intended to charac-
terize the previously unidentified smaller strike-slip fault seg-
ments that are ubiquitous in the Precambrian basement
throughout Oklahoma. Some of the large magnitude sequences
already have been constrained by local investigations (e.g., the
Mw 5.8 Pawnee earthquake; Chen et al., 2017), whereas other
faults hosting significant seismicity have yet to be studied in
detail (e.g., theMw 5.0 Cushing earthquake; Fig. 5). The faults
of productive, larger magnitude sequences could be constrained
by fault planes, beyond the fault trends investigated in this
study. In addition, although our method is optimized for ver-
tically oriented faults, subvertical faults would be better char-
acterized by planes rather than line segments and could be the
focus of future work.

CONCLUSIONS

Using a large-scale template-matching catalog that was applied
to cataloged earthquakes in Oklahoma (Skoumal et al., 2016),
earthquakes identified between 1 January 2010 and 31
December 2016 were relocated using GrowClust. This

relocated Oklahoma template-matched seismic-
ity catalog (SKW19) is currently the most com-
plete statewide catalog for Oklahoma during
this 6 yr window. Using this relocated catalog,
we identified seismogenic fault segments by
developing an algorithm (which we call
FaultID) that spatially clusters earthquakes
and then searches for linear trends within each
cluster. Considering the large number of earth-
quakes in Oklahoma, the FaultID algorithm
made the process of identifying previously
unmapped seismogenic faults more approach-
able and objective. The trends of these auto-
matically identified faults were in general
agreement with SH max measurements, and we
suggest that these faults could aid our approx-
imations of stress orientations in areas that lack
borehole measurements.

DATA AND RESOURCES

All seismic waveform data were obtained
through the Incorporated Research Institutions
for Seismology Data Management Center
(IRIS-DMC, www.iris.edu). Waveform data were
contributed to IRIS from networks GS (doi:
10.7914/SN/GS), N4 (doi: 10.7914/SN/N4), NP
(doi: 10.7914/SN/NP), NQ (doi: 10.7914/SN/
NQ), OK (doi: 10.7914/SN/OK), TA (doi:
10.7914/SN/TA), TX (doi: 10.7914/SN/TX), US
(doi: 10.7914/SN/US), Y7 (doi: 10.7914/SN/
Y7_2016), Y9 (doi: 10.7914/SN/Y9_2016), ZD
(doi: 10.7914/SN/ZD_2014), and ZP (doi:
10.7914/SN/ZP_2016). Focal mechanisms were
determined using HASH (Hardebeck and

Shearer, 2002; https://earthquake.usgs.gov/research/software).
Earthquakes were relocated using GrowClust (https://
github.com/dttrugman/GrowClust). The earthquake catalog that
contained master events was obtained from the Oklahoma
Geological Survey (OGS, http://www.ou.edu/ogs.html). All web-
sites were last accessed in September 2018.
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▴ Figure 7. Rose diagrams of the fault segment orientations in geographical bins.
Black bars denote the frequency of a given fault orientation in 5° azimuthal bins.
Within each rose diagram, n and d represent the number of fault segments and the
summed length (in kilometers) of fault segments in the corresponding geographical
bin, respectively. Only the geographical bins in this area with >20 fault segments
are shown. Dashed lines represent the median SH max measurements (Alt and
Zoback, 2016) within each bin, and solid lines represent the azimuths correspond-
ing to optimal orientations for slip (assuming a 30° deviation from SH max). The color
version of this figure is available only in the electronic edition.
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