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We developed a Python package—easyQuake—that consists of a flexible set of tools
for detecting and locating earthquakes from International Federation of Digital
Seismograph Networks-collected or field-collected seismograms. The package lever-
ages a machine-learning driven phase picker, coupled with an associator, to produce
a Quake Markup Language (QuakeML) style catalog complete with magnitudes and
P-wave polarity determinations. We describe how nightly computations on day-long
seismograms identify lower-magnitude candidate events that were otherwise missed
due to cultural noise and how those events are incorporated into the Oklahoma
Geological Survey statewide network upon analyst manual review. We discuss appli-
cations for the package, including earthquake detection for regional networks and
microseismicity studies in arbitrary user-defined regions. Because the fundamentals
of the package are scale invariant, it has wide application to seismological earthquake
analysis from regional to local arrays and has great potential for identifying early after-
shocks that are otherwisemissed. The package is fast and reliable; the computations are
relatively efficient across a range of hardware, and we have encountered very few
(∼1%) false positive event detections for the Oklahoma case study. The utility and nov-
elty of the package is the turnkey earthquake analysis with QuakeML file output, which
can be dropped directly into existing real-time earthquake analysis systems. We have
designed the functions to be quite modular so that a user could replace the provided
picker or associator with one of their choosing. The Python package is open source and
development continues.

Motivation
Automatic earthquake identification, phase arrival pick asso-
ciation, and event location can be conducted by myriad differ-
ent open-source and proprietary algorithms and computer
programs. For the earth scientist, there are no or limited bar-
riers to collecting data from open local experiments or archives
and producing an earthquake catalog. To identify an earth-
quake within a continuous seismogram, often the seismologist
will utilize a detection algorithm that identifies impulsive
pulses; for example, a short-term average to long-term average
trigger is sufficient to identify a pick on a single seismograph
component at a single station. Picks frommultiple stations that
cluster in time may identify a possible earthquake. Given a
velocity model, travel-time lookup tables are referenced to
determine a distance based on relative S-P times, and an earth-
quake origin location can be determined or further refined

with the relative P-wave travel times at different stations.
Subsequent analysis might yield a magnitude, relocation of
the hypocenter, or other ancillary information (focal mecha-
nism and so on) about the source.

Machine learning in seismology has rapidly evolved with
recent enhancements to earthquake detection (Perol et al.,
2018; Ross et al., 2018; Kong et al., 2019) and earthquake pick
association (Ross et al., 2019), which enhances research efforts
that utilize those small earthquakes. Machine-learning catalogs
can identify smaller earthquakes than might otherwise be
determinable with routine processing, and they have the added
advantage that they are not reliant upon pre-existing template
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earthquakes in network matched-filter methods (Walter et al.,
2017) or repeating signals (e.g., Skoumal et al., 2016).

Often, earthquake catalogs produced for research purposes
lack the earthquake association information (pick times, sta-
tions utilized, and so on) for identified events, when those
studies are published. Meanwhile, earthquake information
from earthquake observatories worldwide have gradually
shifted to utilizing the Quake Markup Language (QuakeML)
for earthquake event metadata, which is an open international
definition in the extensible markup language (XML) format.
The standard allows the sharing of event data among observa-
tories and is the de-facto standard for event queries to various
International Federation of Digital Seismograph Networks
(FDSN) webservices. For example, QuakeML is utilized by
regional seismic networks (e.g., Walter et al., 2020) within the
Advanced National Seismic System (ANSS) to push solutions
to the U.S. Geological Survey (USGS) that forms the Compre-
hensive Catalog (ComCat). Observatory-derived earthquake
catalog products in the QuakeML format are rich sources of
information, are easily accessible, as well as are reproducible
datasets.

It is certainly possible that machine learning will unveil fun-
damental earthquake behaviors, as the field evolves. The ability
to detect smaller and smaller earthquakes could yield surpris-
ing discoveries related to earthquake nucleation, the spectrum
of fault-slip behaviors, and could provide unique insight that
eventually enables short-term forecasting. Many of these
advanced seismological tools do not automatically output
richly detailed datasets, such as the details found in a QuakeML
file. We specifically guided our development of easyQuake to

make earthquake regional net-
work monitoring and research
studies more reproducible and
verifiable, by outputting the
detailed QuakeML file. We
assembled a Python package
using various existing compo-
nents with some modification
and have written several util-
ities so that the package can
serve as a turnkey solution for
taking raw seismograms and
producing a robust research-
grade earthquake catalog. The
package we introduce here
strives to strike the balance
between reproducibility while
improving the performance of
earthquake identification avail-
able through other methods.
We describe several potential
uses for easyQuake, including
an example from a recent

event. The main driver of this article includes a case study
for how we have implemented it to augment our routine
real-time earthquake analysis and cataloging of events in
Oklahoma.

Running easyQuake
The easyQuake suite relies on several recent Python packages
released in the last 5 yr. First and foremost, ObsPy (Krischer
et al., 2015) underlies all of the reading and writing of seismo-
grams and event metadata. The ObsPy package is well docu-
mented and broadly utilized among seismologists. Essentially,
easyQuake guides all steps of the earthquake catalog generation
workload, including, producing candidate phase arrival detec-
tion, gathering of picks for earthquake association, locating
events during association, and magnitude determination.
We also include several utilities that output necessary input
files for hypoinverse (Klein, 2002) and hypoDD (Waldhauser
and Ellsworth, 2000) input files for earthquake location and
relocation, respectively. A more detailed summary of each
analysis step follows. Each step of the analysis (Fig. 1) is driven
by a separate subprogram of the easyQuake package to provide
the utmost modularity in all the analysis steps and provide flex-
ibility for handling larger datasets, which is described later.

Download data—Gather seismograms
We start with gathering seismograms from relevant FDSN data
repositories. Optionally, easyQuake can be pointed toward
existing data that are organized around a structure in which day-
long data reside in folders designating the day (YYYYMMDD),
within a project folder. Although seismograms are downloaded
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Figure 1. Workflow within the easyQuake package for detection, location, magnitude calculation,
and other optional additional analysis steps for both continuous and event modes.
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in miniSEED format, existing datasets can be processed if they
are in miniSEED or Seismic Analysis Code formats. In general,
all the data are organized around a top-level project folder (the
user-assigned variable project_folder is the full path for the
project directory on the user’s computer). Below this folder,
directory names that correspond to individual days or assigned
event times (variable dirname is the sub directory in which
pick, travel time, and 1D associator tables are stored.). If data
are gathered from FDSN sources, station metadata, including
instrument response, will be downloaded into the day
directory. If data are locally gathered, easyQuake is pro-
grammed to assume that the metadata also exists in the day
directory, though, if it is not there or does not exist, it will
attempt to gather it from FDSN webservices during later analy-
sis steps.

Earthquake detection
By default, easyQuake utilizes machine learning for the earth-
quake phase detection, by incorporating a system call to the
Generalized Phase Detection (GPD) picker (Ross et al., 2018).
The GPD picker utilizes a convolutional network trained on
millions of seismograms from southern California, to predict
the pick times and identify the body-wave phase type of
potential arrivals at individual stations. The picker leverages
machine-learning software that is significantly sped up by
the massively parallel chip architecture of a graphics processing
unit (GPU). By default, easyQuake is configured to utilize 1
GPU; users with multiple GPUs should identify the file loca-
tion of the picker script within the easyQuake package and edit
accordingly. In addition, although the GPD picker will run on a
CPU, it will be incredibly slow without an NVIDIA video card
with the Compute Unified Device Architecture (CUDA) par-
allel computing platform installed on the machine. If hardware
limitations prevent utilizing the GPD picker, users can also
optionally select a frequency-band (FB) picker, which is based
on Lomax et al. (2012) and included in the PhasePApy package
(Chen and Holland, 2016).

Earthquake association
For earthquake association, which gathers available picks, clus-
ters them in time and attempts to associate events utilizing
travel-time lookup tables, we utilize the PhasePApy 1D asso-
ciator (Chen and Holland, 2016). Despite the availability of
deep-learning phase associators (e.g., Ross et al., 2019), we
choose a more standard associator for simplicity in that users
have the ability to choose the thresholds inherent to earth-
quake association, for example, epicentral distance, number
of associated candidates before declaring an event, and so
on. PhasePApy utilizes travel-time lookup tables that are com-
puted using the TauP (Crotwell et al., 1999) submodule within
ObsPy and using the IASP91 (Kennett and Engdahl, 1991)
global velocity model. The user can provide their own velocity
model, if they so choose.

The first step of the association process is to aggregate picks
from the same station on different components and to utilize
S-P times to identify possible paired P/S picks for the station.
In our testing, the GPD picker did not satisfactorily deduce
S picks with a high degree of confidence, and, thus, we added
this conservative step to force the S-P travel times to dictate
possible candidate events at a single station. Next, the associa-
tor determines candidate S-P distances from the S-P travel
times and corresponding travel-time lookup tables. The asso-
ciator determines an origin time based on the S-P distance and
backprojecting a corresponding P-wave travel time. Because
origin times will naturally cluster when verifiable events occur,
the associator next clusters those origin times based on a user-
defined value for the number of stations.

Locations are determined by minimizing the residuals
between the S–P distances and the epicenter-to-station dis-
tance. Further details on the PhasePApy associator and other
possible user-defined thresholds for optimization are described
in detail in Chen and Holland (2016) and should be consulted
when making changes to the association that deviate from the
default parameters. Although some of the easyQuake functions
directly control the associator, such as the maximum S-P dis-
tance, others, such as the number of clustered candidate sta-
tions, before an event is declared, can be edited by directly
editing the PhasePApy code that is distributed within the
easyQuake package.

The simplicity of this associator makes the earthquake sol-
utions easier to understand for the novice user. Furthermore,
the separation between detection and association within the
package allows the user to vary thresholds within both detec-
tion and association steps to optimize event detection for the
unique geometry of their regional network or earthquake
study.

One of the drawbacks of the currently implemented asso-
ciator is the relative slow speed of association when dealing
with a large number of picks derived from the machine-
learning detection stage. This issue grows, as the detection area
or density of stations incorporated into the analysis grows.
Various strategies could be implemented to improve slow-
downs associated with earthquake association. First, users
could select overlapping subnetworks within the broader
regional detection area; this strategy is sometimes imple-
mented in real-time earthquake processing. Second, the user
can increase the hyper parameter associated with pick proba-
bility in the modified GPD picker script (gpd_predict.py)
included within the package, which should speed up associa-
tion by reducing the number of candidate picks. By default, it is
set to 0.994, which in our testing provided a good balance
between robust detection and minimizing false positive detec-
tions. Last, a user could run the detection step separate from
association, and run it serially for several days. In another
script, one would want to parallelize the association steps using
a computer with several processor cores and sufficient random
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access memory (RAM). We provide some example scripts in
the Github repository that demonstrate how this could be
done. In future releases, we plan to improve the earthquake
association component of the package by either modifying
the PhasePApy associator further or exploring incorporating
a machine-learning associator.

Combine all project associations and format for
QuakeML
Once all earthquakes have been associated, the events and sta-
tions databases exist as sqlite-formatted database files within
individual day or event folders within the project directory.
The next step combines all events within those folders into
a QuakeML catalog file through the use of ObsPy tools. The
user has the further option to split the catalog into individual
QuakeML event files. The QuakeML standard has specific pre-
scriptions for how the metadata for an earthquake should be
organized in a hierarchical way. The populating of these fields
for each event, including, Pick, Arrival, and Origin objects,
occurs during this step. During the conversion from sqlite
association tables to the ObsPy catalog objects that are
QuakeML-compatible, we also create hypoinverse station
and event files that are saved to the project top-level directory
and can be used for later relocation. The initial hypocenters
generated by the associator can be fairly coarse, because the
travel-time tables are calculated with TauP on a generic veloc-
ity model.

Local magnitude calculation
Once all earthquakes have been associated, and the events are
in QuakeML style formats as a catalog object, we can then
calculate local magnitudes. We follow recent International
Association of Seismology and Physics of the Earth’s Interior
(IASPEI) guidance (Bormann and Dewey, 2014) that local
magnitudes should be calculated with the Hutton and Boore
(1987) formulation for earthquake magnitudes for areas with
attenuative properties similar to California (Bormann and
Dewey, 2014). The formulation for a station magnitude esti-
mate is:

EQ-TARGET;temp:intralink-;df1;53;236ML � log10�A� � 1:11 log10�D� � 0:00189D − 2:09; �1�

in which A is the horizontal displacement maximum ampli-
tude in nm from a seismograph in which the modern instru-
ment response is deconvolved, and a digital response for the
Wood–Anderson seismometer is convolved to simulate a read-
ing from that type of seismometer. We use a 2080 sensitivity
and damping constant of 0.7 for theWood–Anderson response
(Uhrhammer and Collins, 1990). Following the IASPEI recom-
mendation, each horizontal displacement is measured inde-
pendently, so there may be two estimates for magnitude
from a given station. We combine all these station-magnitude
estimates within a 160 km radius and compute a median value,

which is the event magnitude. We utilize a cutoff of 160 km to
avoid the critical refraction distance in which Lg waves are
prominent for ∼40 km thick crust. The standard deviation
of the station magnitudes is the magnitude uncertainty. The
individual station magnitudes, event magnitude, and event
magnitude uncertainty are included in the QuakeML catalog
file. In practice, if one were to utilize the package in other
regions or were conducting a research study in which an accu-
rate magnitude is desired, one would utilize a more generalized
form of equation (1) and determine coefficients that corre-
spond to the local attenuative properties of the study area
(e.g., Walter et al., 2018).

Further earthquake analysis
We include utilities within easyQuake to reingest the
QuakeML files and produce the files necessary to run hypoin-
verse (Klein, 2002) and hypoDD (Waldhauser and Ellsworth,
2000). Furthermore, during the earthquake magnitude step,
polarities for P waves are estimated by searching for a local
minimum or maximum after the P-wavepick time, as long
as the absolute value of the pick amplitude is at least five times
greater than the standard deviation of the seismic waveform in
a 5 s window before the P-wavepick time. The polarity pick is
added to the relevant QuakeML file. We also include modules
for calculating a HASH focal mechanism through the use of the
hashpy Python module (see Data and Resources). We plan to
further extend the capability of earthquake analysis within
easyQuake, to include the automatic production of maps and
various statistical properties of the seismicity catalogs within
individual projects.

Case Studies
Augmenting the detection capability of a regional
seismic network
At the Oklahoma Geological Survey (OGS), we utilize the
SeisComP3 (SC3) real-time earthquake processing software to
detect, associate, review, and disseminate earthquake events to
state stakeholders and through the USGS Product Distribution
Layer (Walter et al., 2020). As the authoritative regional net-
work under the ANSS for the state, those solutions are posted
by USGS and archived into the ComCat. Thus, cataloged earth-
quakes should be verified before posting. To reduce the chance
of a false positive event, we conduct a manual review of any
machine-learning detected earthquake prior to public release.

When the UTC day ends (7 p.m. central daylight time), we
run a nightly detection on the data we generated in the past
24 hr. During the next business day, analysts will look through
the detections and then manually trigger events within the SC3
system, if they can verify that the ML-detected event has suf-
ficient coverage to work the event in SC3. Because the event is
already in the QuakeML format, it is trivial to load the candi-
date event information directly into the SC3 internal process-
ing database that aggregates the origin, pick, amplitude, and so
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on. We are able to strip away the event identifier information,
which is created within easyQuake automatically, and only
pass the pick, arrival, and origin information to SC3, in which
the system will associate a new event. In this way, the detected
events are indistinguishable from regularly detected SC3
events, and theML-detected events are queued for analysis that
occurs during each working day. Once the event is reviewed by
the analyst, it is released to the public. The script to run the
daily detection and add it to the SC3 system is included in
the Github repository in the examples folder.

We find that, in general, the easyQuake package performs
quite well at augmenting the regional network. Although we
have only been running the nightly detection for the last
month, we identify a factor of ∼2 more earthquakes than the
real-time SC3 system (Fig. 2). Often, the earthquakes detected
by easyQuake but missed by SC3 tend to be in central locations
(where station density is higher) and have small magnitudes, or
they are slightly larger magnitude events in areas where the
station geometry is less dense (Fig. 3). In addition, easyQuake
appears to identify more quarry events than were detectable
with just SC3. This is, in part, due to the fact that more quarries
are located in eastern Oklahoma, where station density is
lower. Overall, easyQuake lowers the magnitude of complete-
ness statewide by ∼0.7 magnitude units (Fig. 2).

Evaluating efficacy and future improvements
Machine-learning convolutional neural networks use rather
large datasets to train a model that can then be utilized to make

decisions on future datasets. As
stated previously, we chose to
use the GPD picker and the
corresponding model that was
trained on seismograms from
southern California. If we had
chosen to train our own model
using Oklahoma seismograms,
one way to validate the picker
would be to test or validate on
a portion of the dataset not in
the training dataset to evaluate
how effectively the model re-
calls the labeled pick. However,
we chose not to train a new
Oklahoma-specific model, in
part, because we found that
the GPD picker suits our ini-
tial purposes in reducing the
catalog completeness by ∼0:7
magnitude units. The central
purpose of easyQuake is facili-
tating the turnkey earthquake
detection and location, and we
leave it up to future users to

determine what parameters are appropriate for their use case.
There are several layers of possible variations from phase
detection to event association that can be tweaked that it would
be difficult to evaluate the effectiveness when the true number
of earthquakes that could be detected within the noise is an
unknown quantity.

The improvement in detection ability at OGS appears to
stem from the GPD picker portion of the easyQuake package.
It performs well at identifying earthquakes that would other-
wise not have been flagged by the Akaike information criteria
(AIC) picker that we currently utilize within SC3. Figure 4 pro-
vides a qualitative example of the performance of the GPD
picker within easyQuake versus the SC3 AIC picker. Figure 4a
indicates that several more picks were identified by easyQuake
relative to the SC3 system, though both approaches success-
fully identified and associated this event. Figure 4b shows
an earthquake that had no SC3 picks, whereas easyQuake iden-
tified a sufficient number of picks to associate an event. One
caveat is that the GPD picker does produce many false-positive
phase picks and does not always correctly identify the phase
type. As described previously, the PhasePApy associator does
not ingest the phase information at this time, so it is not
impacted by incorrect phase type identification. Rather, the
associator identifies only the pick time when it attempts
to cluster picks in time to trigger the next steps in the event
association.

As shown in Figure 2, easyQuake augmented routine analy-
sis efforts at OGS during the time period from 7 May 2020 to

2020/05/15

2020/06/01

2020/06/15

2020/07/01

2020/07/15

2020/08/01

2020/08/15

(a) (b)

Figure 2. Performance of easyQuake relative to the real-time SeisComP3 (SC3) system at Oklahoma
Geological Survey (OGS). (a) Earthquake magnitudes with time, since we started running easyQuake
nightly to augment the real-time SC3 detection. Black circles identify earthquakes detected by
easyQuake that were otherwise missed entirely by SC3. (b) Gutenberg–Richter style plot of cumulative
histogram of detected events within 0.1 magnitude bins, indicating an ∼0:7 unit magnitude of
completeness improvement. A Gutenberg–Richter b-value equal to 1 is plotted as a dashed line.
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31 August 2020, by detecting an additional 836 events that
would have been otherwise undetected, which is a 70%
improvement in the number of reported earthquakes (1186
events would have been reported solely with SC3). Those addi-
tional events were verified and often repicked by analysts. We
identified no instances when easyQuake failed to identify an
SC3-detected event and 23 instances in which an analyst could
not verify an earthquake that occurred during the origin time
identified by easyQuake. The 23 instances are either true false
positives, in which random noise picks are associated as a pos-
sible event, or an event has occurred but is not immediately
identifiable by an experienced analyst. Because OGS functions
as a regional network, providing verifiable earthquake

information, we simply categorize such unconfirmable events
as false positives. During that time period, 23 unconfirmed out
of 2022 confirmed events that suggest 1% of events could be
false positives, with the default settings in the version of
easyQuake distributed in Github.

The 23 candidate events that were unconfirmable had pre-
liminary magnitudes ML 1.3–1.8, as calculated with equa-
tion (1). Those magnitudes and all easyQuake detections
tend to have magnitudes that are systematically ∼0:4 magni-
tude units higher than when confirmed within SC3, because we
utilize a magnitude scale that is region-specific to Oklahoma
(e.g., Walter et al., 2020). This suggests that smaller magnitude
earthquakes may have slightly higher chance of associating a
false event. To prevent possible false positives, a user could take
a number of steps, including increasing the number of stations
required to declare an event within the association step or
altering parameters within the GPD picker to reduce the
chance of noise triggering a pick declaration. Although the
total number of detected events would decrease, there would
be a smaller chance of a false-positive event declaration.

We plan future improvements to ease the addition of
additional pickers or additional associators, which may be
interchanged based upon user’s preference or computational
improvements. For example, as stated previously, the associa-
tor is much slower than the picker portion. We have tested the
daily OGS calculations on a machine with an NVIDIA Geforce
1050 Ti, with an overall value of ∼600 U.S. when it was pur-
chased 4 yr ago. During a test of a daily calculation, it requires
several hours to detect and associate a day of data in which we
identify 10–15 earthquakes. However, these estimates would
vary wildly, depending upon the hardware that is used. This
is clearly the end member of minimum system capability that
one should utilize with easyQuake; the specified hardware is at
the minimum level of CUDA compatibility to run the GPD
picker component of easyQuake.

Other applications and early aftershock detection
The flexibility of the easyQuake module is such that it would
be useful for a wide range of problems, when the science is
advanced by increasing the number of identified earthquakes.
One such example would be to rapidly identify earthquakes
after large events, when the regional network may be slow
to respond or when a regional network does not exist. If there
are sufficient data that are FDSN-archived, these data can be
rapidly processed. For example, we show an example of the
easyQuake package applied to a region surrounding the 31
March 2020 central Idaho earthquake (Fig. 5). We identify
an order of magnitude more events (15,367 earthquakes) than
available for download through ComCat (1693). The easyQuake-
identified events have magnitude values that are systematically
∼0:6 units higher magnitude than the ComCat events, likely
due to the IASPEI-guided magnitude calculation utilized
within easyQuake. If one were pursuing an expanded study
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Figure 3. Example earthquake (circles) and quarry event (diamonds)
detections from several weeks of routine and easyQuake
processing of network data. (a) Map includes only events identified
by the SC3 analysis system. Inset shows the North America with
the study region highlighted by the black box. (b) Map includes
those events that were missed by SC3 but identified by
easyQuake, which are entered into the regional catalog.
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of the Idaho earthquake, one might want to calibrate their
own local magnitude distance attenuation function to USGS
ComCat waveform-based moment tensor magnitudes (e.g.,
Walter et al., 2018). For this demonstration of easyQuake to
central Idaho, it required only defining the region and time
period of analysis (see Github for example code).

The easyQuake package would also be suitable for densi-
fying aftershock catalogs. For example, Rosson et al. (2019)
identified relatively high Omori aftershock decay c-values for
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Figure 4. Record section plots for two events in Oklahoma.
(a) Event ok2020rakx, an ML 1.4 earthquake, was detected and
located automatically, and both SC3 and easyQuake picks are
shown. (b) For event ok2020qxah, an ML 0.7 earthquake, there
was no location and no picks detected by SC3, whereas
easyQuake identified several picks and associated an event that
was later confirmed by an OGS analyst.
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Oklahoma mainshock–aftershock sequences. Large c-values
could indicate incomplete earthquake catalogs, as a result of
unidentified early aftershocks within the coda or trailing the
coda of the larger mainshocks. easyQuake may help in iden-
tifying early aftershocks in a systematic way for the myriad
large earthquakes that occur in areas with dense instrumenta-
tion. Goebel et al. (2019) identified a reduced aftershock effi-
ciency for Oklahoma earthquakes, when the state regulatory
agency required injection well volume reductions after larger
events. The easyQuake package could be used to extend such
analysis and test the robustness of various other aftershock-
related hypotheses. For example, systematically improved
aftershock catalogs may improve the quality of aftershock fore-
casts after large events (e.g., Michael, 2018).

We demonstrated a workflow whereby we redundantly run
easyQuake to identify smaller earthquakes. However, it could
be routinely utilized by regional networks to ensure that earth-
quakes above a network’s nominal magnitude of completeness
are not missed. In situations where networks are overwhelmed,
such as during aftershocks or volcanic eruptions, one might
envision a future in which easyQuake or similar approaches
could be deployed to augment regional networks in an ad hoc
way with cloud-based infrastructure. The cloud offers an envi-
ronment in which computational resources can elastically
increase, based on operational need after large events or

eruptions, as long as regional
networks are prepared to han-
dle and trust the externally cre-
ated data products.

Conclusion and
Future Work
We showcased the capability of
the easyQuake package and
demonstrated that it augments
the performance of the real-time
network at OGS. Because it is
written in a flexible manner, it
can easily be applied to recent
events in which the data are
freely available at FDSN archives.
We showed that in Oklahoma,
easyQuake augments our real-
time capabilities and increases
the number of detected events
by a factor of 2. In one other case
study, we demonstrated that
applying the package to Central
Idaho after the 31 March 2020
earthquake yields a factor of 10
more detected events.

Although machine learning
holds tremendous promise to

improve routine human analysis of earthquakes and enhance
our scientific understanding of the earthquake process, some
caution is necessary. The role of regional seismic networks is to
deliver timely and reliable earthquake information. Machine
learning is at the stage in which regional networks should lev-
erage the efficiencies inherent in identifying events that would
be otherwise obscured by noise. However, regional networks
are run by trusted organizations that serve various stakehold-
ers, primarily the public. The trusted relationship relies upon
remaining a credible information resource and cannot afford
the possibility of faulty or false information. When large mag-
nitude or complex events occur, it is critical to retain well-
trained and experienced analysts and scientists to process the
trusted data and disseminate contextual information to the
public. Although the future seems limitless for machine learn-
ing’s role in seismology, those capabilities should be balanced
with concerted workforce support and training.

Data and Resources
All the necessary scripts and some example files are available on
Github (https://github.com/jakewalter/easyQuake). The package is
installable with the Python package manager, Python Package
Index (“pip install easyQuake”). Additional examples and guidance
on utilizing easyQuake can be obtained by contacting the authors.
We utilize datasets from various regional seismic networks, and those

Event detections (2020/01/01–2020/08/20)(a) (b)

Figure 5. Example use case for identifying aftershocks for the March 2020 Mw 6.5 central Idaho
earthquake. (a) Earthquake magnitudes with time in which the white circles identify earthquakes
downloaded from Comprehensive Catalog. Black plus signs indicate easyQuake-identified
earthquakes. (b) Gutenberg–Richter style plot of cumulative histogram of detected events for both
catalogs. A Gutenberg–Richter b-value equal to 1 is plotted as a dashed line. The higher cumulative
values for easyQuake-identified events indicate systematically higher magnitudes, because those
event magnitudes are calculated using a generic rather than a regionally tuned attenuation
function for local magnitude.
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real-time data are available at the Incorporated Research Institutions
for Seismology (IRIS) Data Management Center at ds.iris.edu under
Federated Digital Seismic Network codes OK (doi: 10.7914/SN/OK),
O2 (doi: 10.7914/SN/O2), RC (doi: 10.7914/SN/RC), IW (doi:
10.7914/SN/IW), IE (doi: 10.7914/SN/IE), UU (doi: 10.7914/SN/UU),
US (doi: 10.7914/SN/US), and UW (doi: 10.7914/SN/UW). Within
the main article, we mention the use of the hashpy Python module
(https://github.com/markcwill/hashpy). The Oklahoma Geological
Survey (OGS) catalog may be downloaded from the U.S. Geological
Survey (USGS) Comprehensive Catalog (ComCat; https://earthquake.
usgs.gov/data/comcat/) or at the OGS webpage (https://ogsweb.ou.
edu/eq_catalog/). The Idaho easyQuake catalog is available (https://
github.com/jakewalter/easyQuake/blob/master/examples/catalog_
idaho.zip) as a zipped file containing a QuakeML-formatted catalog
that can be read with the ObsPy Python package. The Idaho ComCat
dataset may be downloaded from the USGS ComCat. All websites
were last accessed in September 2020.
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